Doubly-refined enumeration of Alternating Sign Matrices and determinants of 2-staircase Schur functions

نویسندگان

  • Philippe Biane
  • Luigi Cantini
  • Andrea Sportiello
  • PHILIPPE BIANE
  • LUIGI CANTINI
  • ANDREA SPORTIELLO
چکیده

We prove a determinantal identity concerning Schur functions for 2staircase diagrams λ = (ln+l, ln, l(n−1)+l′, l(n−1), . . . , l+l, l, l, 0). When l = 1 and l = 0 these functions are related to the partition function of the 6-vertex model at the combinatorial point and hence to enumerations of Alternating Sign Matrices. A consequence of our result is an identity concerning the doubly-refined numbers of Alternating Sign Matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A formula for the doubly refined enumeration of alternating sign matrices

Zeilberger [12] proved the Refined Alternating Sign Matrix Theorem, which gives a product formula, first conjectured by Mills, Robbins and Rumsey [9], for the number of alternating sign matrices with given top row. Stroganov [10] proved an explicit formula for the number of alternating sign matrices with given top and bottom rows. Fischer and Romik [7] considered a different kind of “doubly-ref...

متن کامل

A formula for a doubly refined enumeration of alternating sign matrices

Zeilberger [12] proved the Refined Alternating Sign Matrix Theorem, which gives a product formula, first conjectured by Mills, Robbins and Rumsey [9], for the number of alternating sign matrices with given top row. Stroganov [10] proved an explicit formula for the number of alternating sign matrices with given top and bottom rows. Fischer and Romik [7] considered a different kind of “doubly-ref...

متن کامل

More refined enumerations of alternating sign matrices

We study a further refinement of the standard refined enumeration of alternating sign matrices (ASMs) according to their first two rows instead of just the first row, and more general “d-refined” enumerations of ASMs according to the first d rows. For the doubly-refined case of d = 2, we derive a system of linear equations satisfied by the doubly-refined enumeration numbers An,i,j that enumerat...

متن کامل

On the Doubly Refined Enumeration of Alternating Sign Matrices and Totally Symmetric Self-Complementary Plane Partitions

We prove the equality of doubly refined enumerations of Alternating Sign Matrices and of Totally Symmetric Self-Complementary Plane Partitions using integral formulae originating from certain solutions of the quantum Knizhnik– Zamolodchikov equation. The authors thank N. Kitanine for discussions, and J.-B. Zuber for a careful reading of the manuscript. PZJ was supported by EU Marie Curie Resear...

متن کامل

New enumeration formulas for alternating sign matrices and square ice partition functions

The refined enumeration of alternating sign matrices (ASMs) of given order having prescribed behavior near one or more of their boundary edges has been the subject of extensive study, starting with the Refined Alternating Sign Matrix Conjecture of Mills-Robbins-Rumsey [25], its proof by Zeilberger [31], and more recent work on doublyrefined and triply-refined enumeration by several authors. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011